Further Results on the Observability of Quantum Systems Under General Measurement

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Results on Betweenness Centrality of Graphs

Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.

متن کامل

Further convergence results on the general iteratively regularized Gauss-Newton methods under the discrepancy principle

We consider the general iteratively regularized Gauss-Newton methods xk+1 = x0 − gαk (F (xk)F (xk))F (xk) ( F (xk)− y − F (xk)(xk − x0) ) for solving nonlinear inverse problems F (x) = y using the only available noise yδ of y satisfying ‖yδ − y‖ ≤ δ with a given small noise level δ > 0. In order to produce reasonable approximation to the sought solution, we terminate the iteration by the discre...

متن کامل

ON CONTROLLABILITY AND OBSERVABILITY OF FUZZY CONTROL SYSTEMS

In order to more effectively cope with the real world problems of vagueness, imprecise and subjectivity, fuzzy event systems were proposed recently. In this paper, we investigate the controllability and the observability property of two systems that one of them has fuzzy variables and the other one has fuzzy coefficients and fuzzy variables (fully fuzzy system). Also, sufficient conditions for ...

متن کامل

Further results on total mean cordial labeling of graphs

A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...

متن کامل

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum Information Processing

سال: 2006

ISSN: 1570-0755,1573-1332

DOI: 10.1007/s11128-006-0022-5